

Online probing for questionnaire evaluation: Effects of sample source and analysis method

Reanne Townsend, Rosalynn Yang, Kristin Chen, Gonzalo Rivero, & Terisa Davis (Westat) Gordon Willis, Stephanie Fowler, & Richard Moser (NIH)

AAPOR 2018 Taking Survey and Public Opinion Research to New Heights

Background and Introduction

- Online Probing (OP) is a questionnaire evaluation methodology which administers probe questions within a web survey to assess targeted items. (see Edgar, Murphy & Keating 2016; Meitinger & Behr 2016).
- Some have experimented with Online Probing procedures to determine whether features such as text box size and probe placement affect data quality (e.g. Behr, Bandilla, Kaczmirek & Braun 2014; Fowler et al 2017).
- However many questions remain about how other features of Online Probing study design may influence results.

Research Questions

- How does the *amount and quality of data* provided in response to Online Probing differ by *sample source or recruitment strategy*?
 - Probability, nonprobability with quotas, convenience sample
- 2. How do *content analysis results* differ by *analysis method*?
 - Traditional "hand-coding" vs. unsupervised keyword extraction

- Short 10-minute web survey completed by 3,089 respondents
 - Questionnaire composed of items from the Health Information National Trends Survey (HINTS)
- Respondents come from 3 different web panels, using varied sampling or recruitment methodologies

probability	nonprobability		
	quota	convenience	
GfK	YouGov	mTurk	
(n=1,033)	(n=1,000)	(n=1,056)	
Probability-based sample (ABS/RDD)	Nonprobability sample with demographic quotas	Nonprobability convenience sample	

- Online Probes were administered as open-ended questions at the end of the questionnaire (retrospectively)
 - One probe each for 4 items. Mix of question and probe types
 - 2 ask respondents to list examples of a construct ("social media", and "medical information")
 - 1 asks for method for calculating whether smoked 100 cigarettes
 - 1 asks for reason behind evaluation of cancer likelihood

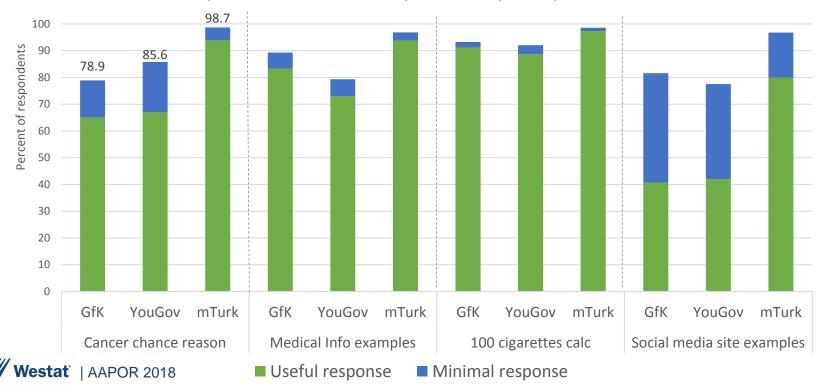
Cognitive probe used for thematic analysis

Earlier in the survey, you were asked the following question:

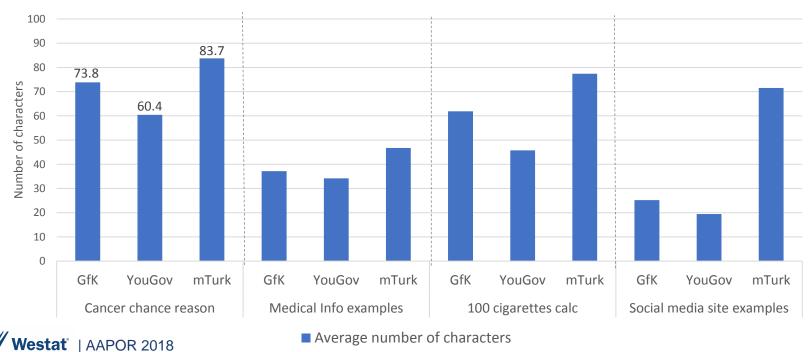
How likely are you to get cancer in your lifetime?	
Very unlikely	
Unlikely	
Neither unlikely nor likely	
Likely	
Very likely	

You said you were [FILL RESPONSE] to get cancer in your lifetime. Why do you think that?

Research Question 1: Sample Source


How does the amount and quality of data provided in response to Online Probing differ by sample source or recruitment strategy?

- Outcome 1: Proportion of respondents giving a "useful" response
 - Coded by hand
 - Nonresponse/off-topic, Minimal response, Potentially useful response
- Outcome 2: Average character count among potentially useful responses
 - Excluding spaces


RQ1 Results

Outcome 1: Proportion of useful responses, by sample source

RQ1 Results

Outcome 2: Average number of characters per useful response, by sample source

RQ1 Results

Summary

- mTurk respondents consistently provide longer and more useful responses compared to the other web panels
 - Could be that mTurk workers satisfice less due to the option mTurk requestors have to reject unsatisfactory work (resulting in no payment)
- There is also variance in length and usefulness of responses by type of probe
 - Probes asking for respondent to list examples seem have shorter and less useful responses

Research Question 2: Analysis Method

RQ2 Analysis

How does analysis method affect a thematic content analysis of the open ended web probe responses?

- Method 1: Traditional "by-hand" coding
 - 2 coders, categories determined jointly by coders, all responses coded (75 double)
- Method 2: Natural Language Processing (NLP) unsupervised keyword extraction and topic model
 - Identify relevant keywords
 - Group keywords into "topics" based on contextual similarity
 - Pre-trained word embedding model Word2Vec, trained on Google News

Associate individual responses with topics based on the occurrence of keywords
 Westat^{*} | AAPOR 2018
 *note: both methods allowed for multiple categories per response

RQ2 Results

Results of Thematic Coding using traditional, by-hand method

Category	Description	% of responses	Inter-rater agreement
Family	Family History, genetics	47.2	1.00
Lifestyle	Smoking, Lifestyle & environment (incl. diet, exercise, pollution, "chemicals")	31.0	0.93
Random	Can't know, no way to know, 50/50 chance, can't control it, it's random, it's luck of the draw	19.7	0.62
Common	Cancer is common, everyone gets it, everything causes cancer	12.5	0.79
Don't know	Don't know/No idea, Don't care, not concerned, don't think about it, why worry	7.4	0.60
Other	All other responses (e.g. current age, other health issues, medical advances)	7.6	0.58
Faith	Faith, feeling, intuition, positive thinking	4.6	0.65

Westat[®] | AAPOR 2018

RQ2 Results

Results of Thematic Coding using unsupervised NLP model

Category	Example keywords	%
Family	 parent, ancestor, grandparent, family, sibling, uncle baby, man, woman, teenager, friend 	
Belief/Certainty	 luck, presume, uncertain, unsure, hunch, gut, prediction, hopeful, hope paranoid, everyone, anybody, anytime, jesus, christ, optimism, god, faith 	
Sun & Other	 sunshine, sun, sunny, beach environment, industry, metal, research, knowledge, capability, technology, future 	
Disease, age, lifestyle		
Actions	take, try, address, counteract, visit, focus, avoid, help, prevent, maintain, protect, exercise, combat, minimize, limit	13.6
Risk & fear	-prone, cause, trigger, culprit, precursor, tendency, predisposition -fear, risk, danger, paranoia, harmful, damage, chemtrails	10.5
Diet & Smoking	 eating, sugar, vegetable, nutrient, pollution, additive, toxic, chemical smoker, cigarette, drinker, substance 	6.8

RQ2 Results

Compare conclusions between analysis methods

- Similarities
 - Family history and genetics as most common response
 - 47% of hand coded responses, 38% of NLP responses
 - Many respondents feel they can't predict or control whether they get cancer
 - "Random" and "Faith" from hand coding (24%), "Belief/Certainty" for NLP (34%)

Compare conclusions between analysis methods

Differences

- "Environmental & Lifestyle factors"
 - Hand-coding grouped all lifestyle factors together (incl. smoking, diet, exercise, pollution, sun)
 - NLP has "action", "diet/smoking", "sun & others", and "Disease, age & lifestyle"
 - A lot of overlap with "Environmental & Lifestyle", but not completely
- "Cancer is common" sentiment did not show up as a category in NLP analysis (13% in hand coding)

Discussion

RQ1. Amount and quality of data by sample source

- The amount and quality of information elicited from Online Probing can differ depending on the source of the sample
 - mTurkers provide more information, but are they "professional respondents" and not generalizable?
- Possible next steps:
 - Examine whether thematic coding results differ by sample source
 - Further exploration of how question and probe type affect amount and quality of information

Discussion

RQ2. Thematic coding results by analysis method

- Thematic categories defined by keywords that can be identified outside of syntactical context can be similar between hand coding and NLP (e.g. family & genetics)
 - Concepts which require context outside of individual keywords are not as easily categorized by unsupervised keyword extraction (e.g. "Sun & Others")
 - Possible next step: Classification could be improved by using more sophisticated NLP methods, such as using n-grams instead of single keywords, and a probabilistic framework rather than deterministic

Thank you!

Contact: ReanneTownsend@Westat.com